Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 20
Фильтр
1.
Vaccines (Basel) ; 11(3)2023 Feb 23.
Статья в английский | MEDLINE | ID: covidwho-2288126

Реферат

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike (S) protein is a critical viral antigenic protein that enables the production of neutralizing antibodies, while other structural proteins, including the membrane (M), nucleocapsid (N) and envelope (E) proteins, have unclear roles in antiviral immunity. In this study, S1, S2, M, N and E proteins were expressed in 16HBE cells to explore the characteristics of the resultant innate immune response. Furthermore, peripheral blood mononuclear cells (PBMCs) from mice immunized with two doses of inactivated SARS-CoV-2 vaccine or two doses of mRNA vaccine were isolated and stimulated by these five proteins to evaluate the corresponding specific T-cell immune response. In addition, the levels of humoral immunity induced by two-dose inactivated vaccine priming followed by mRNA vaccine boosting, two homologous inactivated vaccine doses and two homologous mRNA vaccine doses in immunized mice were compared. Our results suggested that viral structural proteins can activate the innate immune response and elicit a specific T-cell response in mice immunized with the inactivated vaccine. However, the existence of the specific T-cell response against M, N and E is seemingly insufficient to improve the level of humoral immunity.

2.
Vaccines (Basel) ; 10(12)2022 Nov 29.
Статья в английский | MEDLINE | ID: covidwho-2127265

Реферат

The nucleocapsid (N) protein contributes to key steps of the SARS-CoV-2 life cycle, including packaging of the virus genome and modulating interactions with cytoplasmic components. Expanding knowledge of the N protein acting on cellular proteins and interfering with innate immunity is critical for studying the host antiviral strategy. In the study on SARS-CoV-2 infecting human bronchial epithelial cell line s1(16HBE), we identified that the N protein can promote the interaction between GTPase-activating protein SH3 domain-binding protein 2 (G3BP2) and tripartite motif containing 25 (TRIM25), which is involved in formation of the TRIM25-G3BP2-N protein interactome. Our findings suggest that the N protein is enrolled in the inhibition of type I interferon production in the process of infection. Meanwhile, upgraded binding of G3BP2 and TRIM25 interferes with the RIG-I-like receptor signaling pathway, which may contribute to SARS-CoV-2 escaping from cellular innate immune surveillance. The N protein plays a critical role in SARS-CoV-2 replication. Our study suggests that the N protein and its interacting cellular components has potential for use in antiviral therapy, and adding N protein into the vaccine as an antigen may be a good strategy to improve the effectiveness and safety of the vaccine. Its interference with innate immunity should be strongly considered as a target for SARS-CoV-2 infection control and vaccine design.

3.
Biomolecules ; 12(11)2022 11 12.
Статья в английский | MEDLINE | ID: covidwho-2109925

Реферат

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently widespread throughout the world, accompanied by a rising number of people infected and breakthrough infection of variants, which make the virus highly transmissible and replicable. A comprehensive understanding of the molecular virological events and induced immunological features during SARS-CoV-2 replication can provide reliable targets for vaccine and drug development. Among the potential targets, subgenomic RNAs and their encoded proteins involved in the life cycle of SARS-CoV-2 are extremely important in viral duplication and pathogenesis. Subgenomic RNAs employ a range of coping strategies to evade immune surveillance from replication to translation, which allows RNAs to synthesize quickly, encode structural proteins efficiently and complete the entire process of virus replication and assembly successfully. This review focuses on the characteristics and functions of SARS-CoV-2 subgenomic RNAs and their encoded proteins and explores in depth the role of subgenomic RNAs in the replication and infection of host cells to provide important clues to the mechanism of COVID-19 pathogenesis.


Тема - темы
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA , Virus Replication/genetics , Viral Proteins/metabolism
4.
Viruses ; 14(8)2022 07 23.
Статья в английский | MEDLINE | ID: covidwho-1957457

Реферат

Reinfection risk is a great concern with regard to the COVID-19 pandemic because a large proportion of the population has recovered from an initial infection, and previous reports found that primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques without viral presence and pathological injury; however, a high possibility for reinfection at the current stage of the pandemic has been proven. We found the reinfection of SARS-CoV-2 in Syrian hamsters with continuous viral shedding in the upper respiratory tracts and few injuries in the lung, and nasal mucosa was exploited by SARS-CoV-2 for replication and shedding during reinfection; meanwhile, no viral replication or enhanced damage was observed in the lower respiratory tracts. Consistent with the mild phenotype in the reinfection, increases in mRNA levels in cytokines and chemokines in the nasal mucosa but only slight increases in the lung were found. Notably, the high levels of neutralizing antibodies in serum could not prevent reinfection in hamsters but may play roles in benefitting the lung recovery and symptom relief of COVID-19. In summary, Syrian hamsters could be reinfected by SARS-CoV-2 with mild symptoms but with obvious viral shedding and replication, and both convalescent and vaccinated patients should be wary of the transmission and reinfection of SARS-CoV-2.


Тема - темы
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Disease Models, Animal , Humans , Macaca mulatta , Mesocricetus , Nasal Mucosa , Pandemics , Reinfection
5.
Vaccines (Basel) ; 10(6)2022 Jun 10.
Статья в английский | MEDLINE | ID: covidwho-1911679

Реферат

OBJECTIVE: We constructed two DNA vaccines containing the receptor-binding domain (RBD) genes of multiple SARS-CoV-2 variants and used them in combination with inactivated vaccines in a variety of different protocols to explore potential novel immunization strategies against SARS-CoV-2 variants. METHODS: Two DNA vaccine candidates with different signal peptides (namely, secreted and membrane signal peptides) and RBD protein genes of different SARS-CoV-2 strains (Wuhan-Hu-1, B.1.351, B.1.617.2, C.37) were used. Four different combinations of DNA and inactivated vaccines were tested, namely, Group A: three doses of DNA vaccine; B: three doses of DNA vaccine and one dose of inactivated vaccine; C: two doses of inactivated vaccine and one dose of DNA vaccine; and D: coadministration of DNA and inactivated vaccines in two doses. Subgroups were grouped according to the signal peptide used (subgroup 1 contained secreted signal peptides, and subgroup 2 contained membrane signal peptides). The in vitro expression of the DNA vaccines, the humoral and cellular immunity responses of the immunized mice, the immune cell population changes in local lymph nodes, and proinflammatory cytokine levels in serum samples were evaluated. RESULTS: The antibody responses and cellular immunity in Group A were weak for all SARS-CoV-2 strains; for Group B, there was a great enhancement of neutralizing antibody (Nab) titers against the B.1.617.2 variant strain. Group C showed a significant increase in antibody responses (NAb titers against the Wuhan-Hu-1 strain were 768 and 1154 for Group C1 and Group C2, respectively, versus 576) and cellular immune responses, especially for variant B.1.617.2 (3240 (p < 0.001) and 2430 (p < 0.05) for Group C1 and Group C2, versus 450); Group D showed an improvement in immunogenicity. Group C induced higher levels of multiple cytokines. CONCLUSION: The DNA vaccine candidates we constructed, administered as boosters, could enhance the humoral and cellular immune responses of inactivated vaccines against COVID-19, especially for B.1.617.2.

6.
Cell Rep ; 39(8): 110864, 2022 05 24.
Статья в английский | MEDLINE | ID: covidwho-1821172

Реферат

The pathological and immune response of individuals with COVID-19 display different dynamics in lung and intestine. Here, we depict the single-cell transcriptional atlas of longitudinally collected lung and intestinal tissue samples from SARS-CoV-2-infected monkeys at 3 to 10 dpi. We find that intestinal enterocytes are degraded at 3 days post-infection but recovered rapidly, revealing that infection has mild effects on the intestine. Crucially, we observe suppression of the inflammatory response and tissue damage related to B-cell and Paneth cell accumulation in the intestines, although T cells are activated in the SARS-CoV-2 infection. Compared with that in the lung, the expression of interferon response-related genes is inhibited, and inflammatory factor secretion is reduced in the intestines. Our findings indicate an imbalance of immune dynamic in intestinal mucosa during SARS-CoV-2 infection, which may underlie ongoing rectal viral shedding and mild tissue damage.


Тема - темы
COVID-19 , SARS-CoV-2 , Animals , Immunity , Intestines , Lung/pathology , Macaca mulatta
7.
Cell Rep ; 37(11): 110112, 2021 12 14.
Статья в английский | MEDLINE | ID: covidwho-1530687

Реферат

An ideal vaccine against SARS-CoV-2 is expected to elicit broad immunity to prevent viral infection and disease, with efficient viral clearance in the upper respiratory tract (URT). Here, the N protein and prefusion-full S protein (SFLmut) are combined with flagellin (KF) and cyclic GMP-AMP (cGAMP) to generate a candidate vaccine, and this vaccine elicits stronger systemic and mucosal humoral immunity than vaccines containing other forms of the S protein. Furthermore, the candidate vaccine administered via intranasal route can enhance local immune responses in the respiratory tract. Importantly, human ACE2 transgenic mice given the candidate vaccine are protected against lethal SARS-CoV-2 challenge, with superior protection in the URT compared with that in mice immunized with an inactivated vaccine. In summary, the developed vaccine can elicit a multifaceted immune response and induce robust viral clearance in the URT, which makes it a potential vaccine for preventing disease and infection of SARS-CoV-2.


Тема - темы
COVID-19 Vaccines/immunology , Combined Modality Therapy/methods , SARS-CoV-2/immunology , Adjuvants, Vaccine , Administration, Intranasal , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Viral/immunology , Antigens/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/immunology , Female , Flagellin/immunology , HEK293 Cells , Humans , Immunity/immunology , Immunity/physiology , Immunity, Humoral/immunology , Immunization , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nucleotides, Cyclic/immunology , Phosphoproteins/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Vero Cells
8.
Microbiol Spectr ; 9(2): e0135221, 2021 10 31.
Статья в английский | MEDLINE | ID: covidwho-1526454

Реферат

The emerging new lineages of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have marked a new phase of coronavirus disease 2019 (COVID-19). Understanding the recognition mechanisms of potent neutralizing monoclonal antibodies (NAbs) against the spike protein is pivotal for developing new vaccines and antibody drugs. Here, we isolated several monoclonal antibodies (MAbs) against the SARS-CoV-2 spike protein receptor-binding domain (S-RBD) from the B cell receptor repertoires of a SARS-CoV-2 convalescent. Among these MAbs, the antibody nCoV617 demonstrates the most potent neutralizing activity against authentic SARS-CoV-2 infection, as well as prophylactic and therapeutic efficacies against the human angiotensin-converting enzyme 2 (ACE2) transgenic mouse model in vivo. The crystal structure of S-RBD in complex with nCoV617 reveals that nCoV617 mainly binds to the back of the "ridge" of RBD and shares limited binding residues with ACE2. Under the background of the S-trimer model, it potentially binds to both "up" and "down" conformations of S-RBD. In vitro mutagenesis assays show that mutant residues found in the emerging new lineage B.1.1.7 of SARS-CoV-2 do not affect nCoV617 binding to the S-RBD. These results provide a new human-sourced neutralizing antibody against the S-RBD and assist vaccine development. IMPORTANCE COVID-19 is a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 pandemic has posed a serious threat to global health and the economy, so it is necessary to find safe and effective antibody drugs and treatments. The receptor-binding domain (RBD) in the SARS-CoV-2 spike protein is responsible for binding to the angiotensin-converting enzyme 2 (ACE2) receptor. It contains a variety of dominant neutralizing epitopes and is an important antigen for the development of new coronavirus antibodies. The significance of our research lies in the determination of new epitopes, the discovery of antibodies against RBD, and the evaluation of the antibodies' neutralizing effect. The identified antibodies here may be drug candidates for the development of clinical interventions for SARS-CoV-2.


Тема - темы
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Binding Sites/immunology , COVID-19 Vaccines/immunology , Crystallography, X-Ray , Disease Models, Animal , Female , Humans , Immunization, Passive/methods , Immunoglobulin G/blood , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Interaction Domains and Motifs/immunology , Viral Load/drug effects , COVID-19 Serotherapy
9.
iScience ; 24(12): 103426, 2021 Dec 17.
Статья в английский | MEDLINE | ID: covidwho-1509907

Реферат

Glycosylation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein mediates viral entry and immune escape. While glycan site is determined by viral genetic code, glycosylation is completely dependent on host cell post-translational modification. Here, by producing SARS-CoV-2 virions from various host cell lines, viruses of different origins with diverse spike protein glycan patterns were revealed. Binding affinities to C-type lectin receptors (CLRs) DC&L-SIGN differed in the different glycan pattern virions. Although none of the CLRs supported viral productive infection, viral trans&cis-infection mediated by the CLRs were substantially changed among the different virions. Specifically, trans&cis-infection of virions with a high-mannose structure (Man5GlcNAc2) at the N1098 glycan site of the spike postfusion trimer were markedly enhanced. Considering L-SIGN co-expression with ACE2 on respiratory tract cells, our work underlines viral epigenetic glycosylation in authentic viral infection and highlights the attachment co-receptor role of DC&L-SIGN in SARS-CoV-2 infection and prevention.

10.
Emerg Microbes Infect ; 10(1): 2194-2198, 2021 Dec.
Статья в английский | MEDLINE | ID: covidwho-1504286

Реферат

Inactivated coronaviruses, including severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and Middle East respiratory syndrome coronavirus (MERS-CoV), as potential vaccines have been reported to result in enhanced respiratory diseases (ERDs) in murine and nonhuman primate (NHP) pneumonia models after virus challenge, which poses great safety concerns of antibody-dependent enhancement (ADE) for the rapid wide application of inactivated SARS-CoV-2 vaccines in humans, especially when the neutralizing antibody levels induced by vaccination or initial infection quickly wane to nonneutralizing or subneutralizing levels over the time. With passive transfer of diluted postvaccination polyclonal antibodies to mimic the waning antibody responses after vaccination, we found that in the absence of cellular immunity, passive infusion of subneutralizing or nonneutralizing anti-SARS-CoV-2 antibodies could still provide some level of protection against infection upon challenge, and no low-level antibody-enhanced infection was observed. The anti-SARS-CoV-2 IgG-infused group and control group showed similar, mild to moderate pulmonary immunopathology during the acute phase of virus infection, and no evidence of vaccine-related pulmonary immunopathology enhancement was found. Typical immunopathology included elevated MCP-1, IL-8 and IL-33 in bronchoalveolar lavage fluid; alveolar epithelial hyperplasia; and exfoliated cells and mucus in bronchioles. Our results corresponded with the recent observations that no pulmonary immunology was detected in preclinical studies of inactivated SARS-CoV-2 vaccines in either murine or NHP pneumonia models or in large clinical trials and further supported the safety of inactivated SARS-CoV-2 vaccines.


Тема - темы
Antibodies, Viral/immunology , Antibody-Dependent Enhancement , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Alveolar Epithelial Cells/pathology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/toxicity , Bronchioles/chemistry , Bronchioles/pathology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , COVID-19/pathology , COVID-19/virology , Cytokines/analysis , Humans , Hyperplasia , Immunoglobulin G/immunology , Immunoglobulin G/toxicity , Lung/pathology , Macaca mulatta , Male , Mice , Mucus , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Vaccines, Inactivated/immunology
12.
Emerg Microbes Infect ; 10(1): 1156-1168, 2021 Dec.
Статья в английский | MEDLINE | ID: covidwho-1249264

Реферат

ABSTRACTThe risk of secondary infection with SARS-CoV-2 and influenza A virus is becoming a practical problem that must be addressed as the flu season merges with the COVID-19 pandemic. As SARS-CoV-2 and influenza A virus have been found in patients, understanding the in vivo characteristics of the secondary infection between these two viruses is a high priority. Here, hACE2 transgenic mice were challenged with the H1N1 virus at a nonlethal dose during the convalescent stage on 7 and 14 days post SARS-CoV-2 infection, and importantly, subsequent H1N1 infection showed enhanced viral shedding and virus tissue distribution. Histopathological observation revealed an extensive pathological change in the lungs related to H1N1 infection in mice recovered from SARS-CoV-2 infection, with severe inflammation infiltration and bronchiole disruption. Moreover, upon H1N1 exposure on 7 and 14 dpi of SARS-CoV-2 infection, the lymphocyte population activated at a lower level with T cell suppressed in both PBMC and lung. These findings will be valuable for evaluating antiviral therapeutics and vaccines as well as guiding public health work.


Тема - темы
Acute Lung Injury/pathology , Angiotensin-Converting Enzyme 2/genetics , COVID-19/pathology , Orthomyxoviridae Infections/pathology , Acute Lung Injury/virology , Animals , COVID-19/therapy , Coinfection/pathology , Coinfection/virology , Cytokines/blood , Disease Models, Animal , Female , Humans , Influenza A Virus, H1N1 Subtype/isolation & purification , Lung/pathology , Lymphocyte Count , Lymphocytes/immunology , Mice , Mice, Transgenic , Orthomyxoviridae Infections/therapy , SARS-CoV-2/isolation & purification , Viral Load , Virus Replication/physiology , Virus Shedding/physiology
13.
Emerg Microbes Infect ; 10(1): 1112-1115, 2021 Dec.
Статья в английский | MEDLINE | ID: covidwho-1246664

Реферат

Neutralizing antibodies in the subjects of an inactivated SARS-CoV-2 vaccine clinical trial showed a decreasing trend over months. An investigation studying the third immunization suggested that the waning of neutralizing antibodies in individuals administered two doses of inactivated vaccine does not mean the disappearance of immunity.


Тема - темы
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunization, Secondary , Immunologic Memory , Adolescent , Adult , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/administration & dosage , Humans , Middle Aged , Vaccination/statistics & numerical data , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Young Adult
14.
Front Immunol ; 12: 661052, 2021.
Статья в английский | MEDLINE | ID: covidwho-1229177

Реферат

While lymphocytopenia is a common characteristic of coronavirus disease 2019 (COVID-19), the mechanisms responsible for this lymphocyte depletion are unclear. Here, we retrospectively reviewed the clinical and immunological data from 18 fatal COVID-19 cases, results showed that these patients had severe lymphocytopenia, together with high serum levels of inflammatory cytokines (IL-6, IL-8 and IL-10), and elevation of many other mediators in routine laboratory tests, including C-reactive protein, lactate dehydrogenase, α-hydroxybutyrate dehydrogenase and natriuretic peptide type B. The spleens and hilar lymph nodes (LNs) from six additional COVID-19 patients with post-mortem examinations were also collected, histopathologic detection showed that both organs manifested severe tissue damage and lymphocyte apoptosis in these six cases. In situ hybridization assays illustrated that SARS-CoV-2 viral RNA accumulates in these tissues, and transmission electronic microscopy confirmed that coronavirus-like particles were visible in the LNs. SARS-CoV-2 Spike and Nucleocapsid protein (NP) accumulated in the spleens and LNs, and the NP antigen restricted in angiotensin-converting enzyme 2 (ACE2) positive macrophages and dendritic cells (DCs). Furthermore, SARS-CoV-2 triggered the transcription of Il6, Il8 and Il1b genes in infected primary macrophages and DCs in vitro, and SARS-CoV-2-NP+ macrophages and DCs also manifested high levels of IL-6 and IL-1ß, which might directly decimate human spleens and LNs and subsequently lead to lymphocytopenia in vivo. Collectively, these results demonstrated that SARS-CoV-2 induced lymphocytopenia by promoting systemic inflammation and direct neutralization in human spleen and LNs.


Тема - темы
COVID-19/immunology , Lymph Nodes/immunology , Lymphopenia/immunology , SARS-CoV-2/immunology , Spleen/immunology , Angiotensin-Converting Enzyme 2/immunology , COVID-19/complications , COVID-19/pathology , Coronavirus Nucleocapsid Proteins/immunology , Cytokines/immunology , Female , Humans , Inflammation/immunology , Inflammation/pathology , Lymph Nodes/ultrastructure , Lymphopenia/etiology , Lymphopenia/pathology , Middle Aged , Phosphoproteins/immunology , RNA, Messenger/immunology , Retrospective Studies , SARS-CoV-2/pathogenicity , SARS-CoV-2/ultrastructure , Spleen/ultrastructure
15.
Bioconjug Chem ; 32(5): 1034-1046, 2021 05 19.
Статья в английский | MEDLINE | ID: covidwho-1217668

Реферат

SARS-CoV-2 caused the COVID-19 pandemic that lasted for more than a year. Globally, there is an urgent need to use safe and effective vaccines for immunization to achieve comprehensive protection against SARS-CoV-2 infection. Focusing on developing a rapid vaccine platform with significant immunogenicity as well as broad and high protection efficiency, we designed a SARS-CoV-2 spike protein receptor-binding domain (RBD) displayed on self-assembled ferritin nanoparticles. In a 293i cells eukaryotic expression system, this candidate vaccine was prepared and purified. After rhesus monkeys are immunized with 20 µg of RBD-ferritin nanoparticles three times, the vaccine can elicit specific humoral immunity and T cell immune response, and the neutralizing antibodies can cross-neutralize four SARS-CoV-2 strains from different sources. In the challenge protection test, after nasal infection with 2 × 105 CCID50 SARS-CoV-2 virus, compared with unimmunized control animals, virus replication in the vaccine-immunized rhesus monkeys was significantly inhibited, and respiratory pathology observations also showed only slight pathological damage. These analyses will benefit the immunization program of the RBD-ferritin nanoparticle vaccine in the clinical trial design and the platform construction to present a specific antigen domain in the self-assembling nanoparticle in a short time to harvest stable, safe, and effective vaccine candidates for new SARS-CoV-2 isolates.


Тема - темы
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Nanoparticles/chemistry , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/immunology , Animals , Antibodies, Neutralizing/immunology , Binding Sites , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Ferritins/chemistry , Ferritins/metabolism , Immunity, Humoral , Macaca mulatta , Male , Nanoparticles/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/metabolism , Ultracentrifugation
16.
Vaccine ; 39(20): 2746-2754, 2021 05 12.
Статья в английский | MEDLINE | ID: covidwho-1174522

Реферат

BACKGROUND: This study examined the safety and immunogenicity of an inactivated SARS-CoV-2 vaccine. METHOD: In a phase I randomized, double-blinded, placebo-controlled trial involving 192 healthy adults 18-59 years old, two injections of three doses (50 EU, 100 EU, 150 EU) of an inactivated SARS-CoV-2 vaccine or placebo were administered intramuscularly at a 2- or 4-week interval. The safety and immunogenicity of the vaccine were evaluated. RESULTS: Vaccination was completed in 191 subjects. Forty-four adverse reactions occurred within 28 days, most commonly mild pain and redness at the injection site or slight fatigue. At days 14 and 28, the seroconversion rates were 87.5% and 79.2% (50 EU), 100% and 95.8% (100 EU), and 95.8% and 87.5% (150 EU), respectively, with geometric mean titers (GMTs) of 18.1 and 10.6, 54.5 and 15.4, and 37.1 and 18.5, respectively, for the schedules with 2-week and 4-week intervals. Seroconversion was associated with synchronous upregulation of antibodies against the S protein, N protein and virion and a cytotoxic T lymphocyte (CTL) response. No cytokines and immune cells related to immunopathology were observed. Transcriptome analysis revealed the genetic diversity of immune responses induced by the vaccine. INTERPRETATION: In a population aged 18-59 years in this trial, this inactivated SARS-CoV-2 vaccine was safe and immunogenic. TRIAL REGISTRATION: CTR20200943 and NCT04412538.


Тема - темы
COVID-19 Vaccines , COVID-19 , Vaccines , Adolescent , Adult , Antibodies, Viral , China , Double-Blind Method , Humans , Immunogenicity, Vaccine , Middle Aged , SARS-CoV-2 , Young Adult
17.
Emerg Microbes Infect ; 10(1): 342-355, 2021 Dec.
Статья в английский | MEDLINE | ID: covidwho-1069193

Реферат

The current study aims to develop a safe and highly immunogenic COVID-19 vaccine. The novel combination of a DNA vaccine encoding the full-length Spike (S) protein of SARS-CoV-2 and a recombinant S1 protein vaccine induced high level neutralizing antibody and T cell immune responses in both small and large animal models. More significantly, the co-delivery of DNA and protein components at the same time elicited full protection against intratracheal challenge of SARS-CoV-2 viruses in immunized rhesus macaques. As both DNA and protein vaccines have been proven safe in previous human studies, and DNA vaccines are capable of eliciting germinal center B cell development, which is critical for high-affinity memory B cell responses, the DNA and protein co-delivery vaccine approach has great potential to serve as a safe and effective approach to develop COVID-19 vaccines that provide long-term protection.


Тема - темы
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/immunology , Vaccines, Subunit/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cell Line , DNA/immunology , HEK293 Cells , Humans , Lymphocyte Count , Macaca mulatta , Mice , Mice, Inbred C57BL , Plasmids/genetics , Rabbits , Recombinant Proteins/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , T-Lymphocytes/immunology
18.
Zool Res ; 41(6): 621-631, 2020 11 18.
Статья в английский | MEDLINE | ID: covidwho-982982

Реферат

Understanding the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and clarifying antiviral immunity in hosts are critical aspects for the development of vaccines and antivirals. Mice are frequently used to generate animal models of infectious diseases due to their convenience and ability to undergo genetic manipulation. However, normal adult mice are not susceptible to SARS-CoV-2. Here, we developed a viral receptor (human angiotensin-converting enzyme 2, hACE2) pulmonary transfection mouse model to establish SARS-CoV-2 infection rapidly in the mouse lung. Based on the model, the virus successfully infected the mouse lung 2 days after transfection. Viral RNA/protein, innate immune cell infiltration, inflammatory cytokine expression, and pathological changes in the infected lungs were observed after infection. Further studies indicated that neutrophils were the first and most abundant leukocytes to infiltrate the infected lungs after viral infection. In addition, using infected CXCL5-knockout mice, chemokine CXCL5 was responsible for neutrophil recruitment. CXCL5 knockout decreased lung inflammation without diminishing viral clearance, suggesting a potential target for controlling pneumonia.


Тема - темы
Betacoronavirus/immunology , Chemokine CXCL5/immunology , Coronavirus Infections/immunology , Immunity, Innate/immunology , Neutrophils/immunology , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/immunology , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/genetics , Betacoronavirus/physiology , COVID-19 , Cell Line , Chemokine CXCL5/genetics , Chemokine CXCL5/metabolism , Coronavirus Infections/genetics , Coronavirus Infections/virology , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neutrophils/metabolism , Neutrophils/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , SARS-CoV-2
19.
PLoS Pathog ; 16(11): e1008949, 2020 11.
Статья в английский | MEDLINE | ID: covidwho-922716

Реферат

The COVID-19 has emerged as an epidemic, causing severe pneumonia with a high infection rate globally. To better understand the pathogenesis caused by SARS-CoV-2, we developed a rhesus macaque model to mimic natural infection via the nasal route, resulting in the SARS-CoV-2 virus shedding in the nose and stool up to 27 days. Importantly, we observed the pathological progression of marked interstitial pneumonia in the infected animals on 5-7 dpi, with virus dissemination widely occurring in the lower respiratory tract and lymph nodes, and viral RNA was consistently detected from 5 to 21 dpi. During the infection period, the kinetics response of T cells was revealed to contribute to COVID-19 progression. Our findings implied that the antiviral response of T cells was suppressed after 3 days post infection, which might be related to increases in the Treg cell population in PBMCs. Moreover, two waves of the enhanced production of cytokines (TGF-α, IL-4, IL-6, GM-CSF, IL-10, IL-15, IL-1ß), chemokines (MCP-1/CCL2, IL-8/CXCL8, and MIP-1ß/CCL4) were detected in lung tissue. Our data collected from this model suggested that T cell response and cytokine/chemokine changes in lung should be considered as evaluation parameters for COVID-19 treatment and vaccine development, besides of observation of virus shedding and pathological analysis.


Тема - темы
Betacoronavirus/pathogenicity , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Animals , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cytokines/immunology , Disease Models, Animal , Lung/immunology , Lung/pathology , Macaca mulatta , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Viral Load/methods , Virulence , Virus Shedding , COVID-19 Drug Treatment
20.
J Med Virol ; 92(11): 2830-2838, 2020 11.
Статья в английский | MEDLINE | ID: covidwho-848038

Реферат

Coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), leads to a series of clinical symptoms of respiratory and pulmonary inflammatory reactions via unknown pathologic mechanisms related to the viral infection process in tracheal or bronchial epithelial cells. Investigation of this viral infection in the human bronchial epithelial cell line (16HBE) suggests that SARS-CoV-2 can enter these cells through interaction between its membrane-localized S protein with the angiotensin-converting enzyme 2 molecule on the host cell membrane. Further observation indicates distinct viral replication with a dynamic and moderate increase, whereby viral replication does not lead to a specific cytopathic effect but maintains a continuous release of progeny virions from infected cells. Although messenger RNA expression of various innate immune signaling molecules is altered in the cells, transcription of interferons-α (IFN-α), IFN-ß, and IFN-γ is unchanged. Furthermore, expression of some interleukins (IL) related to inflammatory reactions, such as IL-6, IL-2, and IL-8, is maintained at low levels, whereas that of ILs involved in immune regulation is upregulated. Interestingly, IL-22, an IL that functions mainly in tissue repair, shows very high expression. Collectively, these data suggest a distinct infection process for this virus in respiratory epithelial cells, which may be linked to its clinicopathological mechanism.


Тема - темы
Bronchi/cytology , Epithelial Cells/virology , SARS-CoV-2/physiology , Virus Replication , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Cell Line , Cytopathogenic Effect, Viral/immunology , Epithelial Cells/immunology , Humans , Immunity, Innate , Interleukins/immunology , Spike Glycoprotein, Coronavirus/metabolism
Критерии поиска